A semi-automatic method to guide the choice of ridge parameter in ridge regression

نویسندگان

  • Erika Cule
  • Maria De Iorio
چکیده

We consider the application of a popular penalised regression method, Ridge Regression, to data with very high dimensions and many more covariates than observations. Our motivation is the problem of out-of-sample prediction and the setting is high-density genotype data from a genome-wide association or resequencing study. Ridge regression has previously been shown to offer improved performance for prediction when compared with other penalised regression methods. One problem with ridge regression is the choice of an appropriate parameter for controlling the amount of shrinkage of the coefficient estimates. Here we propose a method for choosing the ridge parameter based on controlling the variance of the predicted observations in the model. Using simulated data, we demonstrate that our method outperforms subset selection based on univariate tests of association and another penalised regression method, HyperLasso regression, in terms of improved prediction error. We extend our approach to regression problems when the outcomes are binary (representing cases and controls, as is typically the setting for genome-wide association studies) and demonstrate the method on a real data example consisting of case-control and genotype data on Bipolar Disorder, taken from the Wellcome Trust Case Control Consortium and the Genetic Association Information Network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Ridge Regression in Prediction Problems: Automatic Choice of the Ridge Parameter

To date, numerous genetic variants have been identified as associated with diverse phenotypic traits. However, identified associations generally explain only a small proportion of trait heritability and the predictive power of models incorporating only known-associated variants has been small. Multiple regression is a popular framework in which to consider the joint effect of many genetic varia...

متن کامل

Two-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output

‎In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed‎. ‎In this regard‎, ‎ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients‎. . ‎To evaluate the proposed regression model‎, ‎we introduce the fu...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

Prediction of chronological age based on Demirjian dental age using robust ridge regression method

Introduction: Estimation of age has an important role in legal medicine, endocrine diseases and clinical dentistry. Correspondingly, evaluation of dental development stages is more valuable than tooth erosion. In this research, the modeling of calendar age has been done using new and rich statistical methods. Considerably, it can be considering as a practicable method in medical science that is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012